2022 METŲ PAGRINDINĖS SESIJOS MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO KANDIDATŲ DARBŲ VERTINIMO INSTRUKCIJA

I dalis

<table>
<thead>
<tr>
<th>Užd. Nr.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ats.</td>
<td>B</td>
<td>C</td>
<td>B</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>C</td>
<td>A</td>
<td>D</td>
</tr>
</tbody>
</table>

II dalis

11. 3

12. \([-2;5]\) (arba \(y \in [-2;5]\), arba \(E_f \in [-2;5]\))

13. \(BC = 6\) (arba 6)

14.1 \(x = \pm 5\) (arba \(\pm 5\))

14.2 \(x = \pm 120^\circ + 360^\circ k, k \in Z\) \(\left(x = \pm \frac{2\pi}{3} + 2\pi k, k \in Z\right)\)

15. \(-0.6\) (arba \(-\frac{3}{5}\))

16. 2 °C (arba 2)

17.1. \(m = \frac{1}{3}\) (arba \(\frac{1}{3}\))

17.2. \(m = -1\) (arba \(-1\))

18. \(135^\circ\) (arba \(\frac{3\pi}{4}\))

19.1. \(x \in (-3;1)\) (arba \((-3;1)\))

19.2. \(f(5) = 1\) (arba 1)
III dalis

<table>
<thead>
<tr>
<th>Užd.</th>
<th>Sprendimas ir atsakymas</th>
<th>Taškai</th>
<th>Vertinimas</th>
</tr>
</thead>
</table>
| 20.1 | $b_2 = b_6 \cdot 0,8 = 1024 \cdot 0,8 = 819,2$
Ats.: 819,2 | 1 | Užgautą teisingą atsakymą. |
| 20.2 | $b_1 \cdot 0,8^5 = 1024$,
$b_1 = 3125$,
$S = \frac{3125}{1-0,8} = 15625$
Ats.: 15625 | 1 | Užgautą teisingą atsakymą. |
| 20.3 | Nauja seka:
b_1, b_3, b_5, \ldots
$q = \frac{b_3}{b_1} = 0,8^2 = 0,64$,
$S_{nelyginiai} = \frac{3125}{1-0,64} = \frac{8680}{9}$
Ats.: $8680\cdot\frac{5}{9}$ (arba 8680,(5)) | 1 | Užgautą teisingą atsakymą. |

<table>
<thead>
<tr>
<th>Užd.</th>
<th>Sprendimas ir atsakymas</th>
<th>Taškai</th>
<th>Vertinimas</th>
</tr>
</thead>
</table>
| 21 | $\log_5(4 - x) + \log_3(22 - x) = 5$,
$\log_3((4 - x)(22 - x)) = 5$,
$(4 - x)(22 - x) = 3^5$,
$(4 - x)(22 - x) = 243$ | 1 | Už teisingai pritaikytą logaritmų savybę |
| | $x^2 - 26x - 155 = 0$
$x_1 = -5$, $x_2 = 31$. | 1 | Užgautą teisingą kvadratine lygti |
| | $\begin{cases} 4 - x > 0, \\ 22 - x > 0. \end{cases}$
Skaičius 31 nėra šios sistemos sprendinys.
Ats.: −5. | 1 | Užgautą teisingą atsakymą. |
<table>
<thead>
<tr>
<th>Užd.</th>
<th>Sprendimas ir atsakymas</th>
<th>Taškai</th>
<th>Vertinimas</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>∠ABD = ∠ACB (duota)</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>∠BAD = ∠BAC (bendras)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trikampiai ABC ir ADB yra panašieji, pagal 2 kampus.</td>
<td></td>
<td>Už teisingą įrodymą.</td>
</tr>
<tr>
<td>22.1</td>
<td>$\frac{AC}{AB} = \frac{AB}{AD}$</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>22.2</td>
<td>$\frac{AC}{AB} = \frac{1}{4} \cdot AC$</td>
<td>2</td>
<td>Už teisingą atitinkamų kraštinių ilgių santykių lygybę.</td>
</tr>
<tr>
<td></td>
<td>$\frac{1}{4} AC^2 = AB^2 = 100,$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$AC = 20.$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ats.: $AC = 20$ (arba 20)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.3</td>
<td>I būdas</td>
<td>2</td>
<td>Už teisingai išreikštą vektorių AC.</td>
</tr>
<tr>
<td></td>
<td>$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{a} + \overrightarrow{b}$,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\overrightarrow{BD} = \overrightarrow{BC} + \overrightarrow{CD} = \overrightarrow{BC} - \frac{3}{4} \overrightarrow{AC}$ =</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$= \overrightarrow{b} - \frac{3}{4} (\overrightarrow{a} + \overrightarrow{b}) = \frac{1}{4} \overrightarrow{b} - \frac{3}{4} \overrightarrow{a}.$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ats.: $\overrightarrow{BD} = \frac{1}{4} \overrightarrow{b} - \frac{3}{4} \overrightarrow{a}.$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>II būdas</td>
<td></td>
<td>Už teisingai pritaikytas vektorių sudeties taisykles.</td>
</tr>
<tr>
<td></td>
<td>$\overrightarrow{BD} = \overrightarrow{BA} + \overrightarrow{AD},$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\overrightarrow{BD} = \overrightarrow{BC} + \overrightarrow{CD},$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\overrightarrow{AD} = \overrightarrow{BD} - \overrightarrow{BA},$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\overrightarrow{CD} = -3\overrightarrow{AD},$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\overrightarrow{BD} = \overrightarrow{BC} - 3(\overrightarrow{BD} - \overrightarrow{BA})$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$4\overrightarrow{BD} = \overrightarrow{BC} - 3\overrightarrow{AB},$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\overrightarrow{BD} = \frac{1}{4} \overrightarrow{b} - \frac{3}{4} \overrightarrow{a}.$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ats.: $\overrightarrow{BD} = \frac{1}{4} \overrightarrow{b} - \frac{3}{4} \overrightarrow{a}.$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Užd.</td>
<td>Sprendimas ir atsakymas</td>
<td>Taškai</td>
<td>Vertinimas</td>
</tr>
<tr>
<td>------</td>
<td>--------------------------</td>
<td>--------</td>
<td>------------</td>
</tr>
</tbody>
</table>
| 23 | 23.1 I būdas

\[
f(x) = a(x-3)^2 + 9,
0 = a(0-3)^2 + 9,
a = -1,
f(x) = -(x-3)^2 + 9 = 6x - x^2.
\] | 8 | 1 Už teisingą parodymą. |
| | II būdas

\[
f(x) = a(x-0)(x-6),
9 = a(3-0)(3-6),
a = -1,
f(x) = -(x-0)(x-6) = 6x - x^2.
\] | 1 | 1 Už teisingą parodymą. |
| | III būdas

\[
f(x) = ax^2 + bx + c,
f(0) = 0, \text{ todėl } c = 0,
\begin{align*}
36a + 6b &= 0, \\
9a + 3b &= 9 \\
a &= -1, b &= 6. \\
f(x) &= 6x - x^2.
\end{align*}
\] | 1 | 1 Už teisingą parodymą. |

Pastaba. Jeigu kandidatas patikrina, kad visi trys duotieji taškai priklauso funkcijos \(f(x) = 6x - x^2 \) grafikui, taškas jam nėra skiriamas.

| 23.2 | \[S = AB \cdot AD, \\
 AD = 6 - 2a, \\
 AB = 6a - a^2, \\
 S(a) = (6a - a^2)(6 - 2a) = 2a^3 - 18a^2 + 36a. \] | 2 | 1 Už teisingą AD išraišką per \(a \). |
| | 1 Už teisingą pagrindimą. |

| 23.3 | \[S'(a) = 6a^2 - 36a + 36 \] | 3 | 1 Už teisingą išvestinę. |
| | \[6a^2 - 36a + 36 = 0, \\
a^2 - 6a + 6 = 0, \\
a_1 = 3 - \sqrt{3}, a_2 = 3 + \sqrt{3}. \] | 1 | Už gautus teisingus kritinius taškus. |
| | \[S'(a) \]
| | \[S(a) \]
| | \[a_{\text{max}} \]
| | \[\text{Ats.: } a = 3 - \sqrt{3} \text{ (arba } 3 - \sqrt{3}) \] | 1 | Už teisingą pagrindimą, kad funkcija įgyja didžiausią reikšmę, kai \(a = 3 - \sqrt{3} \). |

| 23.4 | 2 |
\[\int_{2}^{5} (6x - x^2) \, dx = \]

\[\left[\frac{3x^2 - x^3}{3} \right]_{2}^{5} = 24. \]

\[\text{Ats.: 24.} \]

Užd. 24

<table>
<thead>
<tr>
<th>Sprendimas ir atsakymas</th>
<th>Taškai</th>
<th>Vertinimas</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.1</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Kubo briaunos ilgis 6, piramidės aukštinės ilgis \(H \)

\[6^3 = \frac{1}{3} \cdot 6^2 \cdot H, \]

\[H = 18, \]

\[SO_1 = 18 + 6 = 24 \]

\[\text{Ats.: 24.} \]

Užd. 24.2

<table>
<thead>
<tr>
<th>Sprendimas ir atsakymas</th>
<th>Taškai</th>
<th>Vertinimas</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.2</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Tiesės \(SO \) ir \(AA_1 \) yra lygiagrečios. Atstumas nuo taško \(S \) iki tiesės \(AA_1 \) yra \(SM \), nes \(SM \perp AA_1 \) (žr. pav.).

\[SM = OA. \]

\[OA = \frac{1}{2} \cdot AC = \frac{1}{2} \cdot \sqrt{6^2 + 6^2} = 3\sqrt{2}. \]

\[\text{Ats.: } 3\sqrt{2} \left(\text{arba } \frac{\sqrt{72}}{2}, \text{ arba } \sqrt{18} \right). \]
Užd. 25

<table>
<thead>
<tr>
<th>Sprendimas ir atsakymas</th>
<th>Taškai</th>
<th>Vertinimas</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f'(x) = e^x + e^{-x}), (e^x + e^{-x} = e^x - e^{-x} + 4), (e^{-x} = 2), (-x = \ln 2, x = -\ln 2), (Ats.: -\ln 2 \left(\frac{\text{arba} \ln 1}{2} \right))</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Užd. 26

<table>
<thead>
<tr>
<th>Sprendimas ir atsakymas</th>
<th>Taškai</th>
<th>Vertinimas</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.1. Du gretimi šviestuvai gali būti: 1 ir 2, 2 ir 3, 3 ir 4, 4 ir 5, 5 ir 6. Iš viso yra 5 variantai. Taigi (m = 5). Iš viso parinkti 2 šviestuvus iš 6 turime (\frac{6 \cdot 5}{2} = 15) variantų. Taigi (n = 15). (\text{P}(\text{du šviestuvai gretimi}) = \frac{5}{15} = \frac{1}{3}). Ats.: (\frac{1}{3})</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>26.2. Kad išjungti šviestuvai nebūtų gretimi, vienoje pusėje turi būti išjungti trys šviestuvai, kitoje – du. Tris poromis negreitimus šviestuvus galime išjungti 4 būdais (arba 1, 3, 5, arba 2, 4, 6, arba 1, 3, 6, arba 1, 4, 6). Du negreitimus šviestuvus, nesančius šalia, galime išjungti (C_6^2 = 5) būdų. Kairėje pusėje galima išjungti tris šviestuvus ir du dešinėje (\text{arba}) du šviestuvus kairėje ir tris dešinėje. Todėl iš viso galimybių yra: 2 (\cdot) 10 (\cdot) 4 = 80. Ats.: 80.</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Užd.</td>
<td>Sprendimas ir atsakymas</td>
<td>Taškai</td>
</tr>
<tr>
<td>------</td>
<td>-------------------------</td>
<td>--------</td>
</tr>
</tbody>
</table>
| **I būdas** | x – kiek detalių išpjauna naujos kartos lazeris per 1 valandą,
t – per kiek valandų įvykdomas užsakymas naujos kartos lazeriui.
$xt = 3(x - 4)(t - 2)$,
$2xt - 12t - 6x + 24 = 0$,
$t(x - 6) = 3x - 12$,
$t = \frac{3x - 12}{x - 6}$
$x - 6 = 1 \Rightarrow x = 7$ (net.),
$x - 6 = 2 \Rightarrow x = 8$ (net.),
$x - 6 = 3 \Rightarrow x = 9, t = 5 \Rightarrow xt = 45$,
$x - 6 = 6 \Rightarrow x = 12, t = 4 \Rightarrow xt = 48$. | 1 | Už teisingo sprendimo būdo pasirinkimą (nežinomųjų įvedimą ir sudarytą teisingą lygtį arba lygčių sistemą). |
| **II būdas** | x – kiek detalių išpjauna naujos kartos lazeris per 1 valandą,
t – per kiek valandų įvykdomas užsakymas naujos kartos lazeriui.
$xt = 3(x - 4)(t - 2)$,
$2xt - 12t - 6x + 24 = 0$,
$t(x - 6) = 3x - 12$,
$x = \frac{6t - 12}{t - 3}$,
$x = \frac{6t - 12}{t - 3} = 6 + \frac{6}{t - 3}$,
$t - 3 = 1 \Rightarrow x = 12, t = 4 \Rightarrow xt = 48$,
$t - 3 = 2 \Rightarrow x = 9, t = 5 \Rightarrow xt = 45$,
$t - 3 = 3 \Rightarrow x = 8$ (net.),
$t - 3 = 6 \Rightarrow x = 7$ (net.). | 1 | Už vieno nežinomojo išreiškimą kitu. |
| **III būdas** | x – kiek detalių išpjauna naujos kartos lazeris per 1 valandą,
t – per kiek valandų įvykdomas užsakymas naujos kartos lazeriui.
$xt = 3(x - 4)(t - 2)$,
$2xt - 12t - 6x + 24 = 0$,
$(x - 6)(t - 3) = 6$, | 1 | Už teisingą pertvarkytą lygtį (sandauga lygi natūraliajam skaičiui). |
| $x - 6 = 1, \ t - 3 = 6 \Rightarrow x = 7$ (net.), | 1 | Už bent vieną lygties sprendinių porą. |
| $x - 6 = 2, \ t - 3 = 3 \Rightarrow x = 8$ (net.), | | |
| $x - 6 = 3, \ t - 3 = 2 \Rightarrow x = 9, \ t = 5 \Rightarrow xt = 45$, | | |
| $x - 6 = 6, \ t - 3 = 1 \Rightarrow x = 12, \ t = 4 \Rightarrow xt = 48$. | | |

Ats. 48.

Už gautą teisingą atsakymą.